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The theorems that follow rely heavily on two relatively unknown but easily
proven results. Letting Y be a random variable with realizations y1, y2, . . . , yn,

σ2(Y ) =
1
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∑ ∑

i<j

(yi − yj)
2, (1)

where i, j = 1, 2, . . . , n. When n = 2, a special case of Equation 1 is

σ2(Y ) =
1

4
(y1 − y2)

2. (2)

The proof of Equation 1 is as follows:

1

n2

∑ ∑

i<j

(yi − yj)
2 =

1

2n2

n
∑

i=1

n
∑

j=1

(yi − yj)
2

=
1

2n2

∑

i

∑

j

(y2

i + y2

j − 2 yiyj)

=
1

2n2



n
∑

i

y2

i + n
∑

j

y2

j − 2
∑

i

yi

∑

j

yj





=

∑

i y2

i

2n
+

∑

j y2

j

2n
− yiyj

=

∑

i y2

i

n
− y2

i

= σ2(Y ).

The proof of Equation 2 follows immediately from Equation 1.
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Theorem: Using the notation in Hill and DePascale (2003), with n = 2 schools,

σ2(T 0) =
σ2(T |S)/N

2
+ σ2(T ), (3)

where σ2(T ) is the variance of school mean true scores for the population of
students (assumed to be essentially infinite for both schools), σ2(T |S) is the
variance of student true scores within a school (assumed to be the same for
both schools), and σ2(T 0) is the variance of school mean true scores for samples
of size N .

Proof: Let the two schools be labeled A and B. Also, let y1 = TA0 be the
mean of student true scores for a sample of size N from school A. Similarly,
y2 = TB0. Then, using Equation 2, the expected value of the variance of TA0

and TB0 is:

σ2(T 0) = E
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, (4)

because E TA0TB0 = (E TA0)(E TB0) since the students are independent for
the two schools. Note that σ2(TA0) is the variance of the mean of student true
scores for samples of size N from school A; similarly, σ2(TB0) is the variance of
the mean of student true scores for samples of size N from school B. Assuming
they are equal, then in the notation of Hill and DePascale (2003),

σ2(TA0) = σ2(TB0) = σ2(T |S)/N.

It follows that Equation 4 is

σ2(T 0) =
σ2(T |S)/N

2
+

(TA − TB)2

4
. (5)

where TA is the population mean for school A and TB is the population mean
for school B. In comparing Equation 2 with the second term in Equation 5, it
is evident that the second term is the variance (over schools) of the population
mean true scores for schools. Therefore,

σ2(T 0) =
σ2(T |S)/N

2
+ σ2(T ). (6)
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Theorem: For any number of schools, n,

σ2(T 0) =

(

n − 1

n

)
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N
+ σ2(T ). (7)

“Proof”: The general proof involves considerable notational complexity. There-
fore, we derive the result here for n = 3 being careful to use n rather than
3 to hint at the generality of the result for any n. When n = 3, there are
(n2 − n)/2 = n(n − 1)/2 = 3 terms in Equation 1:
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+
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+
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,

where the expected value of σ2(Y ) is to be interpreted as σ2(T 0). Note that
each of the terms in square brackets has the form of Equation 2, which is the
variance for a vector of two scores. It follows from the derivation of Equation 3
(see especially Equation 5) that
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where T i and T j are the population mean scores for schools i and j, respec-
tively. Now, the last term in Equation 8 has the form of a variance, as given by
Equation 1. Thus,
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+ σ2(T ). (9)
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