Synthesizing Evidence in a Comprehensive Assessment System

Nathan Dadey \& Brian Gong
Center for Assessment

Reidy Interactive Lecture Series
September 17 ${ }^{\text {th }}, 2015$

Center for Assessment

Students within a comprehensive assessment system can take hundreds of items across multiple assessments.

However, assessment results are often summarized poorly.

The Goal: find a way to combine information across multiple assessments

The Goal: find a way to combine information across multiple assessments
for all assessment given in an academic year.

The Goal: find a way to combine information across multiple assessments
for all assessment given in an academic year.

However, the results of such a model can't be understood in isolation.

Statistical
Model

Interpretive Framework

Presentation Structure

Presentation Structure

We examine these elements generally,

in terms of a specific hypothetical example.

Presentation Structure

We examine these elements generally,

in terms of a specific hypothetical example.

Context

Instruction

Scope \& sequence of instruction, as captured by the ordering the Common Core State Standards.

Instruction

Scope \& sequence of instruction, as captured by the ordering the Common Core State Standards.

We show this as a Curriculum Map.

Curriculum Map

Curriculum Map

$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { School Quarters \& } \\ \text { Assessment Schedule }\end{array} & & & \text { Q1 } & \\ \hline \begin{array}{c}\text { Operations \& Algebraic Thinking } \\ \text { Division \& Multiplication LT } \\ \text { Section 3: Factors and Multiples }\end{array} & 4.0 \text { A.4 }\end{array}\right]$

Let's examine the key parts of this map by looking at Quarter 1.

Quarter \& Assessment Administration

School Quarters \& Assessment Schedule

Each box is a $4^{\text {th }}$ Grade CCSS.

School Quarters \& Assessment Schedule

is Numbers \& Operations in Base Ten, Standard 1.

Summative Assessment

School Quarters \& Assessment Schedule

The first row shows the number of

 items per LT section.

School Quarters \& Assessment Schedule

The second row shows the percent of

 items per LT section.

Curriculum Map

The LT Sections on each assessment, the number of items per LT, the scores reported, \& when the assessments are given.

The LT Sections on each assessment, the number of items per LT, the scores

given.

Assessment

The LT Sections on each assessment, the number of items per LT

Issues of design that cut across "types" of assessments.

The LT Sections on each assessment can be selected based on

The summative assessment.

Instruction.
A Post/Pre Design.

The LT Sections on each assessment can be selected based on

The number of items per LT section can

Equal.

Unequal.

The number of items per LT section can

Equal.

Unequal, with emphasis based on

The number of items per LT section can Equal.

Unequal,

 with emphasis based onSummative Assessment.

Use

Use

The purpose of the assessment system and the theory of action that supports it.

Purpose

Diagnostic
Predictive
Evaluative

Purpose

Purpose

Purpose

What is P ?
P is a prediction of performance on the summative assessment.

P is a prediction of performance on the summative assessment,

based on a statistical model, e.g.,
linear regression,
Bayesian network, or
tree model.

Teachers use P to inform their instructional decisions.

Extra support within the classroom Extra support outside the classroom Extended support outside of the classroom Intensive support outside of the classroom

Extra support within the classroom
see the work of Phil Daro.

Theory of Action

Inputs

Prediction

Action Mechanisms

Teachers identify students predicted to perform poorly

Theory of Action

Inputs

Prediction

Action Mechanisms

Teachers identify what LT sections these students are having trouble with

Theory of Action

Let's say it's the Shapes \& Angles LT, Section 3: Angles.

Theory of Action

Inputs

Teachers provide extra support within the classroom to these students on the relevant LT sections

Action Mechanisms

School Quarters \& Assessment Schedule	Q3			Interim $\# 3$
Operations \& Algebraic Thinking				
Early Equations \& Expressions LT Section 1: Exploring arithmetic and geometric patterns/sequences	4.OA. 5			2
Number \& Operations-Fractions				
Fractions LT Section 2: Equivalence and Comparison of Fractions	4.NF. 1	4.NF. 2		5
Fractions LT Section 3: Operations with Fractions	4.NF.3b, a \& c	4.NF. 5	4.NF.3d	6
Division \& Multiplication LT Section 5: Multiplication and Division Problems Involving Non-Whole Rational Number Operators	$\begin{gathered} \text { 4.NF.4a, } \\ \text { b, c } \end{gathered}$			5
Measurement \& Data				
Length, Area \& Volume LT Section 3: Area and Perimeter	4.MD. 3			

School Quarters \& Assessment Schedule	Q3				Interim
Operations \& Algebraic Thinking					
Early Equations \& Expressions LT Section 1: Exploring arithmetic and geometric patterns/sequences	4.OA. 5				2
Number \& Operations-Fractions					
Fractions LT Section 2: Equivalence and Comparison of Fractions	4.NF. 1	4.NF. 2			5
Fractions LT Section 3: Operations with Fractions	4.NF.3b, a \& c	4.NF. 5	4.NF.3d		6
Division \& Multiplication LT Section 5: Multiplication and Division Problems Involving Non-Whole Rational Number Operators	$\begin{gathered} \text { 4.NF. } 4 \mathrm{a}, \\ \mathrm{~b}, \mathrm{c} \end{gathered}$				5
Measurement \& Data					
Length, Area \& Volume LT Section 3: Area and Perimeter	4.MD. 3				2
Shapes \& Angles LT Section 3: Angles	$4 . \mathrm{G1}$	$\begin{gathered} \text { 4.MD5a } \\ \& b \end{gathered}$	4.MD6	4.MD7	

These students must be taught all of the third quarter LT sections plus an extra LT section.

Section 3: Angles

Theory of Action

Inputs

Teachers provide extra support within the classroom to these students on the relevant LT sections

Action Mechanisms

Theory of Action

Effects

Intermediate
Ultimate
Even if a teacher does these actions, attaining the ultimate effect relies on additional steps \& related assumptions.

$\left.$| These students |
| :---: |
| master relevant LT |
| sections |$\longrightarrow \right\rvert\,$| Students predicted to |
| :---: |
| perform poorly do |
| not perform poorly |

Theory of Action

Effects

Intermediate

Ultimate

| These students
 master relevant LT
 sections |
| :---: |\longrightarrow| Students predicted to |
| :---: |
| perform poorly do |
| not perform poorly |

Statistical

 Model
Statistical

Model

The model used and their benefits.

Some Possible Models

Despite their differences, these models have many of the same benefits.

Despite their differences, these models have many of the same benefits.

Better coverage of LT Sections Parameterization Relationships between Assessments Incorporate Additional Information
Increased Accuracy

School Quarters \& Assessment Schedule		Q1	Interim	Q2	Interim $\# 2$
Operations \& Algebraic Thinking					
Division \& Multiplication LT Section 3: Factors and Multiples	4.0A. 4			Division \& Multiplication LT	

E.g., by including scores from interims \#1 \& \#2 the model better covers the LT Sections.

Section 4: Multiplication and Division Problems Involving Multi-digit Whole Numbers

Measurement \& Data

Geometry

Recap

Modeling results from multiple assessments can add value, but interpretation depends on the other elements.

Modeling results from multiple assessments can add value, but interpretation depends on the other elements.

However,

the articulation of each element is valuable in its own right.

Nathan Dadey ndadey@nciea.org

