Defining the NGSS Domain to be Assessed: Challenges and solution approaches

Brian Gong (Center for Assessment)
Kathleen Scalise (California)
Kevin King (Washington)
April McCrae (Delaware)

Presentation at the 2017 RILS (Reidy Interactive Lecture Series)
Sponsored by the Center for Assessment
September 28, 2017 Portsmouth, NH
Overview

• Aspects of domain definition for assessment

• Some key challenges of domain definition for NGSS

• Some principles and solution approaches

• Presentations by states working on NGSS assessments
 – California (Kathleen Scalise, University of Oregon)
 – Washington (Kevin King, WestED)
 – Delaware (April McCrae, Delaware Dept. of Education)

• Discussion
Domain definition for NGSS assessment

• Content/skills
• Expertise/performance
• Assessment vs. instruction vs. other
• Assessment validity argument
• Documents that embody domain definition for assessment
Definition of NGSS content/skills

• Domain of “science” content(/skills/dispositions)
 – Scope
 • Dimensions: NGSS’ Scientific & Engineering Practices (SEP), Disciplinary Content Ideas (DCI), and Cross-Cutting Concepts (CCC)
 • Specific knowledge/skills: 39 DCI sub-ideas; 8 SEP, 7 CCC
 • Combinations
 – Performance Expectations (PEs) to define assessment targets
 – 1-D, 2-D, 3-D (definition of CCC)
 – If multiple-dimension, can/should be pulled apart in scoring or analysis for assessment?
 – Sequence
 • Temporal order (e.g., grade/band-specific)
 • Logical dependencies over time (within and across grades)
Definition of expertise/performance

• Cognitive complexity
 – What is presented
 – Question/problem: What it takes to respond
Cognitive Rigor Matrix – Science (Hess)

<table>
<thead>
<tr>
<th>Revised Bloom’s Taxonomy</th>
<th>Webb’s DOK Level 1: Recall & Reproduction</th>
<th>Webb’s DOK Level 2: Skills & Concepts</th>
<th>Webb’s DOK Level 3: Strategic Thinking/Reasoning</th>
<th>Webb’s DOK Level 4: Extended Thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply</td>
<td>Follow simple procedures (recipe-type directions)</td>
<td>Select a procedure according to criteria and perform it</td>
<td>Design investigation for a specific purpose or research question</td>
<td>Select or devise approach among many alternatives to solve a problem</td>
</tr>
<tr>
<td></td>
<td>Calculate, measure, apply a rule (e.g., rounding)</td>
<td>Solve routine problem applying multiple concepts or decision points</td>
<td>Conduct a designed investigation</td>
<td>Conduct a project that specifies a problem, identifies solution paths, solves the problem, and reports results</td>
</tr>
<tr>
<td></td>
<td>Apply algorithm or formula (e.g., area, perimeter)</td>
<td>Retrieve information from a table, graph, or figure and use it to solve a problem requiring multiple steps</td>
<td>Use concepts to solve non-routine problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Make conversions among representations or numbers, or within and between customary and metric measures</td>
<td>Construct models given criteria</td>
<td>Use & show reasoning, planning, and evidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Translate between problem & symbolic notation when not a direct translation</td>
<td></td>
</tr>
</tbody>
</table>

© Karin K. Hess (2009, updated 2011). Linking research with practice: A local assessment toolkit to guide school leaders. Permission to reproduce is given when authorship is fully cited (karinhessvt@gmail.com)
• Cognitive/performance complexity in context
 – Retention how long after instruction
 • Assess grade level/grade span?
 • Instruct grade level/review grade span?
 – Similarity to what, how was instructed (application/transfer)
 – Support/scaffolding... free-form
 – Integration of knowledge, skills
 – Individual/collaborative
Definitions for assessment vs. other uses

- Purposes: conceptual, instructional, assessment, other uses

- Domain definition for assessment may differ

Conceptual definition of science domain

Definition of science domain to be assessed

Conceptual definition of science domain to be instructed

Transfer
• **Claim** about person/performance in relation to domain, and intended uses

• Assessment designed to provide sufficient **evidence** to inform claims

 – Test design

 – Assessment task/item design and scoring

• How information from evidence will be **combined** to inform claims (collection of evidence) and intended uses [measurement models, comparability]
Documents that embody domain definition

- Content standards’ elaboration in terms of domain definition
- Claims (and theory of action)
- Achievement/performance level descriptors
- Reports
 - Student annual score reports’ categories/dimensions
 - Combined and derivative scores’ reports (e.g., trend, growth, gaps)
- Test blueprints
- Item/task templates/detailed specifications including scoring templates
Some challenges to NGSS domain definition

• Need domain definition of aspects in addition to NGSS standards and Performance Expectations

• Breadth of NGSS; sampling represented in PEs
NGSS breadth

• 39 DCI sub-ideas, 8 SEP, 7 CCC = 2,184 distinct “things”

• SEP/DCI/CCC (and PEs) by grades K-5 and grade spans for middle and high school
Sparse sampling in PEs

• The PEs designate specific combinations of SEP, DCI, and CCC. Generally the sampling across all the PE at a grade is so sparse that it would be difficult to claim the NGSS have been represented adequately or coherently.

• At a grade span, the PE cumulatively sample the SEP and CCC relatively more, but still sample the DCI fairly sparsely.
Number of NGSS Scientific & Engineering Practices in the Performance Expectations by DCI Disciplines

<table>
<thead>
<tr>
<th>Grade</th>
<th>AQDP</th>
<th>DUM</th>
<th>PCOI</th>
<th>AID</th>
<th>UMCT</th>
<th>CEDS</th>
<th>EAE</th>
<th>OECI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ESS</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3-5 ETS</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Middle School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ESS</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>High School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ESS</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ETS</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PS = Physical Science; LS = Life Science; ESS = Earth & Space Science; ETS = Engineering/Technology Science
AQDP = Asking Questions and Defining Problems; DUM = Developing and Using Models; PCOI = Planning and Carrying Out Investigations
AID = Analyzing and Interpreting Data; UMCT = Using Mathematics and Computational Thinking; CEDS = Constructing Explanations and Designing Solutions; EAE = Engaging in Argument from Evidence; OECI = Obtaining, Evaluating, and Communicating Information
<table>
<thead>
<tr>
<th>Grade 5</th>
<th>AQDP</th>
<th>DUM</th>
<th>PCOI</th>
<th>AID</th>
<th>UMCT</th>
<th>CEDS</th>
<th>EAE</th>
<th>OEIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS1, From Molecules to Organisms: Structures and Processes</td>
<td>LS1.A, Structure and Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS1.B, Growth and Development of Organisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS1.D, Social Interactions and Group Behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS2.B, Cycles of Matter and Energy Transfer in Ecosystems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS2.C, Ecosystem Dynamics, Functioning, and Resilience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS2.D, Social Interactions and Group Behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS3, Heredity: Inheritance and Variation of Traits</td>
<td>LS3.A, Inheritance of Traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS3.B, Variation of Traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS4.B, Natural Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS4.C, Adaptation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS4.D, Biodiversity and Humans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-LS1-1
5-LS2-1
5-LS2-1

Some solution principles & approaches

- Attend to domain definition up front and elaborate and articulate your specifications of the NGSS for assessment; avoid retro-fitting item development to claims and reporting structures (some iteration expected)

- Make your test-level claims coherent (may need to modify or adapt PEs); test-level not the same as item level!

- Focus and simplify the NGSS
 - Reduce content scope
 - Cluster SEP and possibly CCC

- Consider test designs that provide more “assessment space,” e.g., matrix sampling, through-course, multiple EOC

- Specify where application and transfer fit for you, in instruction and assessment
Center for Assessment
www.nciea.org

Brian Gong
bgong@nciea.org

For more information: