

Assessing the NGSS in Delaware

September, 2017

What are we testing?

Stated Intent of the Standards

- "[Students need a] deeper understanding of content as well as application of content"
 - To prepare students for broader understanding, and deeper levels of scientific and engineering investigation.
 - To become less like novices and more like experts (pg. 3)*
- "Students need to be able to make sense of the world and approach problems not previously encountered—new situations, new phenomena, and new information." (pg. 14)*

Current DRAFT Claims

OVERARCHING CLAIM: Students can use crosscutting concepts to define a system and identify cause and effect relationships and patterns that provide an opportunity for using scientific practices such as analyzing data, gathering information, communicating information, developing models or constructing explanations/arguments and applying foundational disciplinary core ideas to make sense of phenomenon relating to the structure and properties of matter, earth and ecosystems and/or space systems.

Subclaim #1:	Subclaim #2:	Subclaim #3:	Subclaim #4:
Gathering Data and	Reason with Evidence	Construct Scientific	Making Connections:
Investigating Scientific	and Evaluate Scientific	Explanations:	
Questions:	Claims and Questions:		
The student is able to	The student is able to	The student is able to	Student is able to use
obtain information, ask	evaluate information,	explain or develop an	crosscutting concepts
questions or define	analyze data, use	argument to support or	to define the
problems, plan and	mathematics and	refute another	phenomena being
carry out investigations,	computational thinking,	explanation of scientific	investigated, recognize
use models to gather	construct explanations,	phenomena by arguing	changes in the system,
data and information	develop arguments	from evidence and/or	and/or to find patterns
and/or use	from evidence and/or	using models to	to use as evidence to
mathematics and	use models to predict	communicate	support explanations or
computational thinking	and develop evidence	information.	arguments of how or
to gather evidence	to make sense of		why the phenomenon
relevant to a scientific	scientific phenomenon.		occurs.
phenomenon.			

Depth/Cognitive Alignment

- The evidence we collect needs to VALIDATE the claim(s) we set forth in the development of our assessment
- We need to make sure we are testing what we SAY we are testing.

It's not a numbers game...

Scientific Literacy SCORE

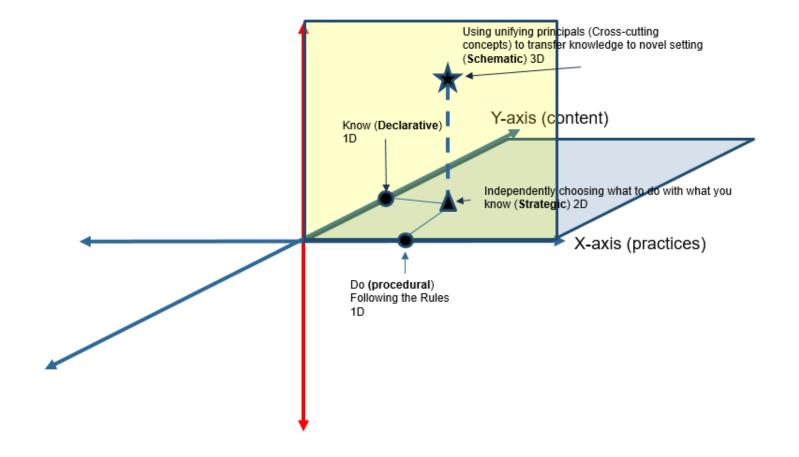
OVERARCHING CLAIM: Students can use crosscutting concepts to define a system and identify cause and effect relationships and patterns that provide an opportunity for using scientific practices such as analyzing data, gathering information, communicating information, developing models or constructing explanations/arguments and applying foundational disciplinary core ideas to make sense of phenomenon relating to the structure and properties of matter, earth and ecosystems and/or space systems.

		Subclaim #1: Gathering Data and Investigating Scientific Questions:	Subclaim #2: Reason with Evidence and Evaluate Scientific Claims and Questions:	Subclaim #3: Construct Scientific Explanations:	Subclaim #4: Making Connections:
Performance Level Descriptors Qualitative Information		The student is able to obtain information, ask questions or define problems, plan and carry out investigations, use models to gather data and information and/or use mathematics and computational thinking to gather evidence relevant to a scientific phenomenon.	The student is able to evaluate information, analyze data, use mathematics and computational thinking, construct explanations, develop arguments from evidence and/or use models to predict and develop evidence to make sense of scientific phenomenon.	The student is able to explain or develop an argument to support or refute another explanation of scientific phenomena by arguing from evidence and/or using models to communicate information.	Student is able to use crosscutting concepts to define the phenomena being investigated, recognize changes in the system, and/or to find patterns to use as evidence to support explanations or arguments of how or why the phenomenon occurs.

KEY QUESTION:

How will cognitive complexity be accounted for in the development and validation of Delaware NGSS Assessment?

Shavelson's Framework


Way's of Knowing	Definition/Description	NGSS Dimensions
Declarative Knowledge	Knowing "what"—definitions/facts, data or descriptions	Disciplinary Core Ideas
Procedural Knowledge	Knowing "how"—being able to measure appropriately, how to set a fair test, how to graph or follow directions.	Science and Engineering Practices
Schematic Knowledge	Knowing "why"—having or being able to use a scientifically justifiable model that can explain the physical world. Ability to interpret problems, troubleshoot systems or predict an effect.	Using DCIs with SEPs
Strategic Knowledge	Knowing "when, where and how" to use certain types of knowledge in a new situation and knowledge of assembling cognitive operations. Deciding what schematic knowledge can be applied, to set task goals, or to control and monitor cognitive processing.	Applying Cross Cutting Concepts to frame a situation and utilizing appropriate DCIs and SEPs to solve or approach a problem

Cross Cutting Concepts elevate to the 3rd Dimension

"Students should not be assessed on their ability to define "pattern," "system," or any other crosscutting concepts as a separate vocabulary word. To capture the vision in the Framework, students should be assessed on the extent to which they have achieved a coherent scientific worldview by recognizing similarities among core ideas in science or engineering that may at first seem very different, but are united through crosscutting concepts" (NGSS, Vol 2, pp. 80-

FOR DISTRIBUTION

Visualization of Shavelson's Framework

How are we testing it?

Embedded Instructional Assessments

Formative in nature

- Answers the question: How can you use the knowledge you've just learned?
- Should tap the following knowledge types:
 - **Declarative** WHAT do you know?
 - **Procedural** How do you do simple scientific tasks?
 - Schematic How do you use what you know to do specific tasks?

End of Unit Assessments

Benchmark Assessments

- Proximal (near term) transfer of knowledge and skills. Answers the question: How can what you learned in this unit be used to solve similar problems?
- Should tap the following knowledge types:
 - **Procedural** How do you do simple scientific tasks?
 - Schematic How do you use your declarative and procedural knowledge to solve or complete specific tasks?

Summative Assessments

 Distal (long term) transfer of knowledge and skills. Answers the question: how can what you've learned be used to solve new problems?

Integrative Transfer

Task

- Should tap the following knowledge types:
 - Schematic How do you use what you know to do specific tasks?
 - Strategic How do you use unifying principals (cross-cutting concepts) to transfer your procedural, declarative and schematic knowledge to a novel situation?