

Center for Education Policy Research

HARVARD UNIVERSITY

Building Blocks for Effective Data Use in Classrooms

2014 Reidy Interactive Lecture Series: Assessment in the Classroom – Bringing it all Together

September 18, 2014

Data

Data come from an ongoing, multi-year CEPR evaluation of a data-based instructional program.

Data collection included:

- school leader surveys
- teacher surveys
- student demographic and performance information (including prior achievement)
- site visit data from a subset of schools

Sample

We are presenting results from 55 schools in five urban districts from three states.

- 512 teachers
- about 8200 students

All of the schools administer interim assessments in some grades and subjects, and receive varying levels of support from their district and/or an external provider.

Center for Education Policy Research

Analyses

We seek to describe teachers' beliefs and practices around instructional data use, and show how these relate to school performance in raising student achievement.

Categories:

- teacher practices
- barriers to data use
- program components

Cross-sectional analyses:

- survey item frequencies
- multilevel regressions
- scale variance decomposition (appendix)

Center for Education Policy Research

HARVARD UNIVERSITY

Teacher Practices

Center for Education Policy Research

HARVARD UNIVERSITY

Teacher Practices

- High frequency of many data-use and instructional practices
- Relatively strong, positive bivariate correlations with student achievement, especially 1) data use and 2) instructional practices
 - Students in schools where teachers use data and various instructional practices more frequently also show larger math achievement gains.
- However, conditional on the frequency that teachers use data in various ways, more frequent data review may be counterproductive.

Center for Education Policy Research

Teachers' Review of Data

Teachers' Uses of Data

Teachers' Instructional Practices

Teacher Practices & Student Achievement in Math: Bivariate Associations

Teacher Practices & Student Achievement in Math: Multivariate Associations

Barriers to Instructional Data Use

Center for Education Policy Research

HARVARD UNIVERSITY

Barriers to Instructional Data Use

- Relatively positive attitudes toward assessments and assessment data, and high levels of confidence
- More frequent use of data by teachers who:
 - have more positive attitudes toward assessment/data,
 - are more confident in various data use and instructional practices, and
 - rate their instructional leaders' abilities higher.

Teachers' Beliefs

Confidence in Using Data

Confidence in Instructional Planning

Barriers to Data Use

School Leader(s)' Abilities

Barriers & Teacher Data Use: Bivariate Associations

Barriers & Student Achievement in Math: Bivariate Associations

Program Components

Center for Education Policy Research

HARVARD UNIVERSITY

Program Components

- Relatively high satisfaction with program components
- More frequent use of data by teachers who:
 - are satisfied with program components and
 - perceive the interim assessments to be better aligned.
- Relatively strong, positive bivariate relationship between teachers' perceptions of the alignment of their math interim assessments and student achievement in math

Center for Education Policy Research

Perceptions of Assessment Rigor

Perceptions of Assessment Alignment

Data & Reporting Satisfaction

Data Support Satisfaction

Program Components & Teacher Data Use: Bivariate Associations

Program Components & Student Achievement in Math: Bivariate Associations

Contact

Beth Morton beth morton@gse.harvard.edu

Center for Education Policy Research

HARVARD UNIVERSITY

Appendix A

Summary

- Most of the variation in self-reported practices, beliefs, and satisfaction is at the teacher level despite these data-use policies and programs often being school or district based.
 - Individual factors, more so than contextual factors, may influence teachers' perceptions and practices.

Variation in Teacher Practices

Most of the variation in teachers' data-related and instructional practices is within schools.

			Instructional				
Variance	Data Review	Data Use	Planning				
Within-school (σ ²)	75%	87%	82%				
Between-school (τ_{π})	5%	5%	9%				
Between-district (τ_{β})	20%	9%	9%				
Unconditional 3-level model accounting for clustering of teachers							
within schools and distr	icts.						

Variation in Hypothesized "Barriers" Scales

	Confidence in						
	Attitudes toward	Confidence	instructional		Perceived		
Variance	assessment/data	in data use	practices	Hindrances	leadership		
Within-school (σ ²)	87%	90%	92%	96%	76%		
Between-school (τ_{π})	3%	6%	2%	1%	5%		
Between-district (τ_{β})	10%	4%	6%	3%	19%		

Unconditional 3-level model accounting for clustering of teachers within schools and districts.

Variation in Program Component Scales

	Perceived	Perceived	Data & reporting	Data support
Variance	rigor	alignment	satisfaction	satisfaction
Within-school (σ²)	74%	83%	81%	80%
Between-school (τ_{π})	5%	0%	2%	6%
Between-district (τ_{β})	21%	17%	16%	14%

Unconditional 3-level model accounting for clustering of teachers within schools and districts.

Barriers & Teacher Data Use: Multivariate Associations

Barriers & Student Achievement in Math: Multivariate Associations

Program Components & Teacher Data Use: Multivariate Associations

Program Components & Student Achievement in Math: Multivariate Associations

