Establishing Learning Goals for Formative Assessment

Brian Gong
Center for Assessment
Reidy Interactive Lecture Series (RILS)
Nashua, NH October 4, 2006
Comprehensive assessment systems

- Inherent limitations of large-scale assessment systems
- Focus on learning and teaching
Foundations

• Instructionally sensitive assessment – purposes and uses
• Validity – reliability trade-offs
• What else is known to inform action in addition to immediate assessment
A look at learning/teaching

• Learning goal-oriented, action context
• Essential elements
 – View of the domain
 – View of student’s understanding
 – Plan for helping student learn in relation to domain goals
A look at assessment

Observation Interpretation

Cognition

The assessment triangle
-- Knowing What Students Know, p. 44
View of the domain

• Constructed through many views
 – Domain experts
 – Developmental psychologists
 – Curriculum (what to teach)
 – Instruction (how to teach)
Intended Sequence and Scope

• Not your traditional “scope and sequence”
 – Not about task decomposition to smallest tasks
 – Not about pacing, practice, or reinforcement
• What is intended to develop
• Why these things (i.e., key for learning progression)
What is intended to develop

• Content
• Other dimension
 –Skills; Complexity – Proficiency
Content standards not enough

- Good examples of state grade-level content standards showing some development of knowledge, skills, or complexity over time
 - NECAP: Math
 - NRC Science:
Complexity continua

- Rote recall to strategic thinking (Webb)
- (Porter & Smithson)
- Concrete to abstract (Dienes)
- Global to analytic to deductive (van Hiele)
- Pre-operational to operational (Piaget & Beth)
- Concepts to rules to problem-solving (Gagne)
- Enactive to symbolic (Bruner)
- External to internal (Vygotsky)
- Situated to decontextualized (Cole & Griffen; Greeno)
- Facts/skills to applications to analysis/synthesis/evaluation (Bloom)
- Naïve interpretations (based on superficial characteristics) to scientific models (focused on key attributes and underlying regularities) (Steen)
- Application, learning potential, metacognition, beliefs and values, whole (Ginsburg et al.)
Proficiency

• Content, complexity, independence together
• Usually not specified completely
• Centered mostly on the complexity dimension!
Why this scope and sequence

- Domain
- Psychology of learning
- Teacher preference
- Student preference
Learning goals

• More than state content standards
• Learning progressions articulate what is to be learned
 – Makes clear the cognitive complexity
 – Provides a sequence and ideally a rationale
 – Identifies choice points that branch to other learning progressions
 – May also catalogue key states of how may be learned in terms of student knowledge representations (not instructional methods)
View of the student

• Cognitive representations
• How content representations develop
 – Example 1: Multiplication
 – Example 2: Forces and Motion
 – Example 3: Biological change
 – Example 5: Historical reasoning
Example: Multiplication

• Acquisition – movement from addition to multiplication
 – Multiplication: problem of finding the total quantity of objects contained in a given number of groups with the same number of elements
 – Cognitive challenges:
 • Learner has to know and operate with two different grouping systems (number of groups and number of items in a group) – not like addition or subtraction
 • Operational number systems different than place value system (e.g., 12 is one ten and two ones)
 • Generalization of learned representations (e.g., quantity per set model; area model; number line model)
Assessment

• Example (Ginsburg)
Example: Forces and motion
Assessment

• Example (Wilson)
Example: Biological change
Assessment

• Example (Gong et al.)
Example: Historical reasoning
Assessment

• Example (Baker)
Prior knowledge

• Incorporation into “more expert” analyses
• Planning future instruction
Other examples

• What are key attributes and distinguishing characteristics?
 – Forrester – reading literature
 – Computer-managed instruction
 – Intelligent tutoring systems
 – Curriculum frameworks
 – Textbooks, instructional programs
View of the Plan

- A hierarchy of values and goals
- Creating and executing a plan for formative assessment to achieve goals
- Formative self-assessment vs. formative instruction
Formative assessment

• Planning and selection
• Observing
• Eliciting
• Student self-evaluation
• Class/groups of students self-evaluation
What to do next? – big goals

• Purpose and values
 – Academic discipline
 – Student self-actualization
 – (from Vallance & Eisner)

• Deciding between individuals and groups of students

• What can I do?
What to do next? – learning goals

• Mastery
• Next in “core sequence”
• Extension
• More independent, less structured
• Transfer, application
• Motivation and other values
For more information:

Center for Assessment
www.nciea.org

Brian Gong
bgong@nciea.org