Part 2: Interim Measures and Learning Trajectory Approaches to Progress Monitoring

Christina Schneider cschneider@nciea.org

Student Learning Objectives

- are a student academic growth goal that an educator sets for his or her students. SLOs are monitored over the duration of time the students are with the teacher for instruction, which may be a full academic year, a semester, or quarter (depending on the context in which the teacher leads instruction). – South Carolina Department of Education
- are content- and grade/course-specific learning objectives that can be validly measured to document student learning over a defined and significant period of time (e.g., semester or year). – National Center for the Improvement of Educational Assessment

Teaching Questions

- What do I want my students to know (my target)?
 - My students will conceptualize and fluently solve multi-step word and applied problems that include multiplication and division within 100.

How does student reasoning grow more sophisticated as a child learns?

	-	<u>0</u>	D	L	F
Begi	ginning	Developing	Approaching Target	On Target	Above Target
Conceputalization Equi num 4 gro	quipartitions manipulatives of odd and even Imbers (e.g., 27 divided in 3 groups; 24 divided in groups) and explains equal or fair shares	Places manipulatives within 100 into arrayed groups of more than two and explains (verbally or in written form) the relationship between repeated addition and multiplication	Self-creates models (e.g., manipulatives or drawings) within 100 into arrayed groups more than two to demonstrate the relationship between addition and multiplication	Places manipulatives within 100 into arrayed groups of more than two and explains (verbally or in written form) the relationship between multiplication and division	Models and explains how models can show the relationship between multiplication and division
Fluency		Automates multiplication facts when factors are less than 5	Automates multiplation facts for benchmark factors of 10 or less (e.g., 7*7, 8*8, 10*7) and uses repeated addition to work around multiplication	Automates multiplication facts for factors of 10 or less and solves division as unknown factor problems by finding missing numbers in any position	Automates division facts for factors of 12 or less
Dperations Addi or les	dds equal groups of more than two that sum to 100 less (e.g. 3+3+3)	Solves word problems and applied involving equal groups with factors that are less than or equal to 5	Uses a variety of strategies to solve single-step word and applied problems involving equal groups, measurement quantities, area and perimeter when quotients and divisors are less than 100	Solves a variety of multi-step word problems requiring multiplication and division within 100 using measurement quantities, perimeter and area	Uses relationships between multiplication and division within 144 to solve multi-step word and applied problems involving equal groups, arrays, and measurement quantities, and the relationship between perimeter and area

Learning Trajectory Alone

Miss Ibeh asked Sam to get chairs for all the tables in the classroom. There can be five chairs at each table, and there are five tables in the classroom. How many chairs will Sam need? Show at least two ways to answer this problem correctly.

Learning Trajectory Alone

×1 ×1 5 ×4 ×4 ×4	x ⁹ x ³ / ₂₇ x ⁵ / ₂₅ x ⁵ / ₂₅ x ² / ₂₇ x ⁵ / ₂₅ x ⁶ / ₂₅ x ³ / ₂₇ x ³ / ₂₇ x ⁵ / ₂₅ x ⁵ / ₂₅ x ² / ₂₇ x ⁵ / ₂₅ x ³ / ₂₇ x ³ / ₂₇ x ⁵ / ₂₅ x ² / ₂₇ x ⁵ / ₂₅ x ⁶ / ₂₅	Bom needs 5 chairs in all.			
		C.	D	F	F
<u>×4</u> ×2	<u>x3 x0 x2 x5 x3 x5 x1</u>	×2			
COMMUNIT (CHARTER ADDROVALLE) FOR		* oping	Approaching Larget		Above larget
Conceputalization	Equipartitions manipulatives of odd and even	Places manipulatives within 100 into arrayed groups	Self-creates models (e.g., manipulatives or drawings)	Places manipulatives within 100 into arrayed groups of more	Models and explains how models can show
	numbers (e.g., 27 divided in 3 groups; 24 divided in	of more than two and explains (verbally or in written	within 100 into arrayed groups more than two to	than two and explains (verbally or in written form) the	the relationship between multiplication and
	4 groups) and explains equal or fair shares	form) the relationship between repeated addition and	demonstrate the relationship between addition and	relationship between multiplication and division	division
		multiplication	multiplication		
Fluency	(Automates multiplication facts when factors are less	Automates multiplation facts for benchmark factors of 10	Automates multiplication facts for factors of 10 or less and	Automates division facts for factors of 12 or
· ·		Mean 5	or less (e.g., 7*7, 8*8, 10*7) and uses repeated addition to	solves division as unknown factor problems by finding	less
			work around multiplication	missing numbers in any position	
Operations	Adds equal groups of more than two that sum to 100	Solves word problems and applied involving equal	Uses a variety of strategies to solve single-step word and	Solves a variety of multi-step word problems requiring	Uses relationships between multiplication and
	or less (e.g. 9+9+9)	groups with factors that are less than or equal to 5	applied problems involving equal groups, measurement	multiplication and division within 100 using measurement	division within 144 to solve multi-step word
			quantities, area and perimeter when quotients and	quantities, perimeter and area	and applied problems involving equal groups,
			divisors are less than 100		arrays, and measurement quantities, and the
					relationship between perimeter and area

Incorporating Interim Measures

 NWEA Fall MAP is 197 which is right on the border of meets and student is projected to be 208 in the spring which is a projection of exceeds. Exceeds on PASS likely meets the national trend for "on track."

	13	86	8 20	08 2:	18
A	B	C	D	E	F
	Beginning	Developing	Approaching Target	On Target	Above Target
Conceputalization	Equipartitions manipulatives of odd and even numbers (e.g., 27 divided in 3 groups; 24 divided in 4 groups) and explains equal or fair shares	Places manipulatives within 100 into arrayed groups of more than two and explains (verbally or in written form) the relationship between repeated addition and multiplication	Self-creates models (e.g., manipulatives or drawings) within 100 into arrayed groups more than two to demonstrate the relationship between addition and multiplication	Places manipulatives within 100 into arrayed groups of mor- than two and explains (verbally or in written form) the relationship between multiplication and division	 Models and explains how models can show the relationship between multiplication and division
Fluency		Automates multiplication facts when factors are less than 5	Automates multiplation facts for benchmark factors of 10 or less (e.g., 7*7, 8*8, 10*7) and uses repeated addition to work around multiplication	Automates multiplication facts for factors of 10 or less and solves division as unknown factor problems by finding missing numbers in any position	Automates division facts for factors of 12 or less
Operations	Adds equal groups of more than two that sum to 100 or less (e.g. 9+9+9)	Solves word problems and applied involving equal groups with factors that are less than or equal to 5	Uses a variety of strategies to solve single-step word and applied problems involving equal groups, measurement quantities, area and perimeter when quotients and divisors are less than 100	Solves a variety of multi-step word problems requiring multiplication and division within 100 using measurement quantities, perimeter and area	Uses relationships between multiplication and division within 144 to solve multi-step word and applied problems involving equal groups, arrays, and measurement quantities, and the relationship between perimeter and area

Triangulating Information

Name Assessment

• What does each student already know?

- NWEA Fall MAP is 197 (SEM is 3 points so ..)

	D	C	D	L L	
	Beginning	Developing	Approaching Target	On Target	Above Target
Conceputalization	Equipartitions manipulatives of odd and even	Places manipulatives within 100 into arrayed groups	Self-creates models (e.g., manipulatives or drawings)	Places manipulatives within 100 into arrayed groups of more	Models and explains how models can show
	numbers (e.g., 27 divided in 3 groups; 24 divided in	of more than two and explains (verbally or in written	within 100 into arrayed groups more than two to	than two and explains (verbally or in written form) the	the relationship between multiplication and
	4 groups) and explains equal or fair shares	form) the relationship between repeated addition and	demonstrate the relationship between addition and	relationship between multiplication and division	division
		multiplication	multiplication		
Fluency		Automates multiplication facts when factors are less	Automates multiplation facts for benchmark factors of 10	Automates multiplication facts for factors of 10 or less and	Automates division facts for factors of 12 or
		than 5	or less (e.g., 7*7, 8*8, 10*7) and uses repeated addition to	solves division as unknown factor problems by finding	less
			work around multiplication	missing numbers in any position	
Operations	Adds equal groups of more than two that sum to 100	Solves word problems and applied involving equal	Uses a variety of strategies to solve single-step word and	Solves a variety of multi-step word problems requiring	Uses relationships between multiplication and
	or less (e.g. 9+9+9)	groups with factors that are less than or equal to 5	applied problems involving equal groups, measurement	multiplication and division within 100 using measurement	division within 144 to solve multi-step word
			quantities, area and perimeter when quotients and	quantities, perimeter and area	and applied problems involving equal groups,
			divisors are less than 100		arrays, and measurement quantities, and the
					relationship between perimeter and area
	L				

My Grade 3 students will conceptualize and fluently solve multistep word and applied problems that include multiplication and division within 100.

<u> </u>			
9	Enter First Name	Enter Last Name	Enter Score
10	First Name	Last Name	Source 1
11	William	Tell	175
12	Hello	Kitty	199
13	Jake	Wiggins	205
14	Zuzu	Bilello	180
15	Benjamin	Bunny	195
16	Roger	Rabbit	189
17	Peter	Cottontail	191
18	Floppsy	Cottontail	196
19			
20			

Consideration: What is the connection to the state assessment?

MATH-Current Season										
	Cut Scores and Percentiles for each State Performance Level									
Grade	Level 1	Lev	el 2	Lev	el 3	Level 4				
	Cut	Cut	Percen-	Cut	Percen-	Cut	Percen-			
	Score	Score	tile	Score	tile	Score	tile			
2	<186	186	35	197	<u>69</u>					
3	<198	198	35	208	<mark>6</mark> 9					
4	<203	203	27	218	<mark>6</mark> 9					
5	<212	212	32	231	78					
6	<218	218	34	235	75					
7	<223	223	36	241	77					
8	<231	231	43	247	79					
High	<223	223	21	238	47	250	74			

*

9	Enter First Name	Enter Last Nar	ne Enter Score	Enter
10	First Name	Last Name	Source 1	Sou
11	William	Tell	175	IE
12	Hello	Kitty	199	(
13	Jake	Wiggins	205	(
14	Zuzu	Bilello	180	(
15	Benjamin	Bunny	195	(
16	Roger	Rabbit	189	(
17	Peter	Cottontail	191	(
18	Floppsy	Cottontail	196	(
19				
20				
21				
22				
23				
<u>24</u>		line Prenarednes		MATH-Curre
Rea	dy Calculate	and reparedites	Cut Scores and P	ercentiles for e

http://legacysupport.nw ea.org/sites/www.nwea. org/files/resources/SC% 20Linking%20Study%20 August2010_Revised_Fin al.pdf

e

0

	Cut Scores and Percentiles for each State Performance Level										
Grade	Level 1	Lev	vel 2	Lev	vel 3	Lev	Level 4				
	Cut	Cut	Percen-	Cut	Percen-	Cut	Percen-				
	Score	Score	tile	Score	tile	Score	tile				
2	<186	186	35	197	<u>69</u>						
3	<198	198	35	208	<mark>6</mark> 9						
4	<203	203	27	218	<mark>6</mark> 9						
5	<212	212	32	231	78						
6	<218	218	34	235	75						
7	<223	223	36	241	77						
8	<231	231	43	247	79						
High	<223	223	21	238	47	250	74				

Baseline means interpreting the present level of performance.

Data

Data Source: 3rd grade math MAP scores

- 17 students (one class) on a CAT administration
- Scores are sorted from low to high (ascending order)
- 201 is the median
- The box plot shows the interquartile range.
 - The top of the box shows the 25th percentile (196)
 - The bottom the 75th percentile (203)
 - The whiskers show the range without outliers – 25 points

A child scores 220 – accelerate?

MATH-Current Season										
	Cut Scores and Percentiles for each State Performance Level									
Grade	Level 1	Lev	vel 2	Lev	vel 3	Level 4				
	Cut	Cut	Percen-	Cut	Percen-	Cut	Percen-			
	Score	Score	tile	Score	tile	Score	tile			
2	<186	186	35	197	<u>69</u>					
3	<198	198	35	208	69					
4	<203	203	27	218	69					
5	<212	212	32	231	78					
6	<218	218	34	235	75					
7	<223	223	36	241	77					
8	<231	231	43	247	79					
High	<223	223	21	238	47	250	74			

*

Triangulation can lead to surprises!

1. Put your chips into an array showing 6 groups of 8.

 Seven friends have 8 cents each. How much money do they have in Show two ways to answer this problem correctly (LA).

Triangulation can lead to confirmation

4. Shaun saved 36 dollars. He saved an equal amount each week. What four different ways he could have saved the money?

Way	Dollars	Weeks
1.	G	6
2.	36	1
3.	Q	4
4.	12	2

3. Four friends have 3 cents each. How much money do they have in all?

4. Shaun saved 36 dollars. He saved an equal amount each week. What are four different ways he could have saved the money?

Dollars	Weeks
12	morday
0	to serve
2	102.30
5	wansury
2	Thurselay
	11,000
	Dollars

1/1-

12

Score of 178

Data

Interpretation

Seventeen students in a Grade 3 mathematics advanced placement course took a computer adaptive test in the Fall of 2014. The average score for the fall mathematics test for **the class** was 201 with a standard deviation of 7, indicating theoretically 68% (reality is 64%) of the students in the class would have scores ranging from 194 to 208. Sixty-four % of students are *just below* being "on track" for the year-end college and career readiness indictor.

Students are in different places in their learning. Four students are predicted to **already** be at the year-end Grade 3 goal. Evidence from this test is that they are ready to access the Grade 4 curriculum. Eleven students are predicted to be well prepared to be CCR at the end of the year. They appear to be able to move quickly, without remediation, through the Grade 3 curriculum. Two students appear to be at risk for not being on track. Their scores (189, 191) are more consistent with scores of students in Grade 2.

Report continued

- Students whose scores fall within one standard deviation are *likely* in similar places in their learning (projected to be around the College and Career Ready cut in the Spring).
- Students below a score of 194 may be lagging beyond their peers in the class and additional evidence of their learning from classroom must be collected to help understand their present level of performance. These are the two students that did not meet the state-identified gifted criteria, but have on other assessment occasions shown performance at the 80th percentile. What happened?

Triangulating information

3. Five friends and you have 9 cents each. How much money do you have in all?

Write a different sentence that you could have also

used to solve your problem.

9+9+9+9+9+9=54

Student score of 191 on MAP.

Student can set up problem using numbers.

Student does catch two-step

problem (5+1)x9

Student memorized fact.

Student cannot generate the model

that shows conceptual

understanding.

Student did not use reasoning between model and facts.

		Beginning	Developing	Approaching Target	On Target	Above Target
ſ	Conceputalization	Equipartitions manipulatives of odd and	places manipulatives within 100 into	Self-creat odel g., manipulatives or	places manipulatives within 100 into arrayed	Models and explains how models
		even numbers (e.g., 27 divided in 3	arrayed groups of more than two and	drawings) 🕟 🛛 🗤 nto arrayed groups	groups of more than two and explains (verbally	can show the relationship between
		groups; 24 divided in 4 groups) and	explains (verbally or in written form) the	more that the hstrate the	or in written form) the relationship between	multiplication and division
		explains equal or fair shares	relationship between repeated addition	relationship between addition and	multiplication and division	
			and multiplication	multiplication		
ľ	Fluency		Automates multiplication facts when factors	Automates multiplation facts for benchmar	Automates multiplication facts for factors of 10 or	Automates division facts for factors of
			are less than 5	factors of 10 or less (e.g., 7*7, 8*8, 10*7) and uses	less and solves division winknown factor problems	12 or less
				repeated addition to work around multiplication	by finding missing amount in any position	
[Operations	adds equal groups of more than two that sum	Solves word problems and applied involving	Uses a variety of strategies to solve single-state	Solves a variety of multi-step word problems	uses relationships between
		to 100 or less (e.g. 9+9+9)	equal groups with factors that are less than or	word and applied problems involving equal	requiring multiplication and division within 100	multiplication and division within 144
			equal to 5	groups, measurement quantities, area and	using measurement quarimeter and area	to solve multi-step word and applied
				perimeter when quotients and divisors are less		problems involving equal groups,
				than 100		arrays, and measurement quantities,
						and the relationship between perimeter
						and area

When interim measures in any grade show low achievement you must play detective. Where is the child's present level of functioning in the curriculum?

3.	Five friends and you have 9 cents each. How much money do you have
	Cile ni

Show your model.		
-6000		
600000		
000000	and the second second second second	
200000		
00000	5 1	
00000	- 66	
000 700	- 07	
000000	e J	
00000		
2000		
ian p		
V.	the state of the s	

Write the math sentence showing how you got your answer.

Write a different sentence that you could have also

used to solve your problem.

9+9+9+9+9+9=54

3. Four friends have 3 cents each. How much money do they have in all?

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dollars	
Way	Dollars	monday
1.	6	ti mara
2.	3	inesting t
3.	B	wainsday
4.	3	Thursday

Center for Assessment www.nciea.org

